Az alacsony rétegződési hibaenergia hatása az ultrafinom szemcsés mikroszerkezet kialakulására és termikus stabilitására

Z. Hegedűs, J. Gubicza, M. Kawasaki, N.Q. Chinh, Zs. Fogarassy and T.G. Langdon

Eötvös Loránd Tudományegyetem, Magyarország University of Southern California, USA Műszaki Fizikai és Anyagtudományi Kutatóintézet, Magyarország University of Southampton, UK

Őszi iskola, 2011. október 5 - 7, Visegrád

Bevezető

Bevezető

- UFG anyagok
- SPD eljárás
- A mikorszerkezet fejlődése nagy és közepes rétegződési hiba
energiájú (γ vagy SFE) fcc anyagokban jól ismert az irodalomban
- Ugyanakkor kevés az információ az alacsony SFE-jú anyagok mikroszerkezetének alakulásáról
- Pedig az alacsony SFE jó alakíthatóságot eredményez

Rétegződési hibaenergia (SFE)

Al	$166\mathrm{mJ/m^2}$
Cu	$45 \mathrm{mJ/m^2}$
Ag	$16 \mathrm{mJ/m^2}$

J.P. Hirth, J. Lothe, Theory of Dislocations, John Wiley, New York, 1982.

Bevezető Mintaelőkészítés

Mintaelőkészítés

- A minták 99.995 at.% (4N5) és 99.99 at.%
 (4N) tisztaságú ezüst rudak voltak
- Hőkezelés 741 K-en

A minták kémiai összetétele								
4N	Cu	Pd	Fe	Se	Sb	Bi		
	30	10	10	10	10	20		
4N5	Cu	Pb	Fe	Se	lr	Au	Pd	
	13	14	5	6	6	10	2	

ECAP - könyöksajtolás

1 átnyomás $\varepsilon = 1$ deformációnak felel meg.

1, 4, 8 és 16 átnyomás

HPT - nagynyomású csavarás

Nagyobb nyírási deformáció, kisebb minta, mint ECAP-nál.

1, 10 és 20 teljes fordulat

Röntgen vonalprofil analízis

- krisztallitméret
- diszlokációsűrűség (ρ)
- ikerhatár gyakoriság (β)

Mikroszkópia SEM – TEM

szemcseméret

Nano- és mikrokeménységmérés

- mikrokeménység
- nanokeménység

Egytengelyű összenyomás

makroszkópikus folyáshatár

Röntgenes mérések

eCMWP*

- A kísérleti pontokra az eCMWP eljárás segítségével a
 - méret
 - deformáció
 - rétegződési hibák (...)

profiljainak konvolúcióját a teljes profilra illesztettük.

Kapott paraméterek: m, σ , q, ϱ , β

* G. Ribárik, J. Gubicza, T. Ungár, Mater. Sci. Eng. A 387-389 (2004) 343-347.

Mikroszkópos szemcseméret @ 4N5 minták

	Szemcseméret az ECAP után							
4N5	Initial	1 ECAP	4 ECAP	8 ECAP	16 ECAP			
	\sim 60 $\mu{ m m}$	$\sim 20\mu{ m m}$	$160\mathrm{nm}$	$200 \ \mathrm{nm}$	$190 \ \mathrm{nm}$			

Az alacsony γ hatása

4N

Mikroszkópos szemcseméret @ 4N minták

	Szemcseméret az ECAP után							
4N	Initial	1 ECAP	4 ECAP	8 ECAP	16 ECAP			
	\sim 60 $\mu{ m m}$	$\sim 20\mu{ m m}$	$230 \ \mathrm{nm}$	$220 \ \mathrm{nm}$	$200 \ \mathrm{nm}$			

Az alacsony γ hatása

Makroszkópikus tulajdonságok @ 4N5 minták

Nanokeménység @ 4N5

Diszlokációsűrűség

A nagy deformációnak kitett minták mikrokeménysége jelentősen az 1 ECAP-os minta keménysége alá esik a hevertetés során.

Az erősen deformált minták diszlokációsűrűsége jelentősen visszaesik a hevertetés során, de sehol nem esik az 1 ECAP-os minta diszlokációsűrűsége alá.

A diszlokációsűrűség megegyezik 4 hónap hevertetést követően, a mikrokeménység azonban nem?

Mikrokeménység

Disszociáció

Kontinuum modellben számolva egységnyi hosszúságú csavardiszlokáció energiáját a következő kifejezés adja:

$$E_{\mathrm{screw}} = rac{Gb^2}{4\pi} \cdot \ln rac{R}{r_0} + E_{\mathrm{core}},$$

ahol *b* a Burgers vektor hossza. Tehát az a konfiguráció valósul meg, ahol b^2 minimális. Ezért érthető, hogy fcc fémekben a diszlokációk képesek parciálisokra bomlani (disszociálni) például az alábbi egyenlet szerint (lásd ábra lent):

$$rac{a_0}{2}[\overline{1}10]
ightarrow rac{a_0}{6}[\overline{1}2\overline{1}] + rac{a_0}{6}[\overline{2}11].$$

A bal oldalon $b_{\rm bal}^2 = 1/2 \cdot a_0^2$, míg a jobb oldalon $b_{
m jobb}^2 = 1/3 \cdot a_0^2$, azaz a disszociáció energianyereséggel jár.

A parciális diszlokációk egyensúlyi távolsága:

$$d = A \cdot \frac{Gb^2}{\gamma}$$

ahol A = 0.019 csavar és 0.048 éldiszlokációk esetén, γ pedig a rétegződési hibaenergia.

	AI	Ni	Cu	Au	Ag
$\gamma [mJ/m^2]$	166	125	78	45	16
d/b (screw)	0.9	3.1	3.7	3.9	8.7

A rétegződési hibaenergia és a parciálisok egyensúlyi távolsága.

A megújulás @ 1

Az S_1 -ről az S_2 síkra történő keresztcsúszáshoz szükséges energia [P.B. Escaing, J. Phys. 29 (1968) 225-239]:

$$W = W_0 \left(1 - 1.2 rac{\sigma_s b}{\gamma} - 1.5 rac{\sigma' b}{\gamma}
ight), \quad ext{abol} \quad W_0 = rac{G b^2 d}{37} \sqrt{\ln \left(2 \sqrt{3} rac{d}{b}
ight)}.$$

A keresztcsúszáshoz szükséges energiát a termikus fluktuációk fedezik. Ekkor a keresztcsúszáshoz szükséges karakterisztikus idő:

$$t_{cs} = rac{1}{
u_0} \exp\left(rac{W}{k_B T}
ight), \hspace{1em} ext{ahol} \hspace{1em}
u_0 pprox 10^{13}\, ext{Hz}$$

Keresztcsúszni csak a csavardiszlokációk képesek, de főleg ezek vannak az anyagban.

Az újrakristályosodás @ 2

Erősen ikresedett tartományból indul az újrakristályosodás.

Az erősen ikresedett tartományokban csökken a térfogatra vonatkoztatott szabadenergia, ezért ezek a térfogatok magként szolgálnak az újrakristályosodáshoz.

A megújulás karakterisztikus ideje

ECAP utáni mikroszerkezeti paraméterek

Mikrokeménység

4N5

8 ECAP-os minta 4 hónapig szobahőmérsékleten hevertetve

Csak teljesen újrakristályosodott területeket lehet látni.

4N

8 ECAP-os minta 1 évig szobahőmérsékleten hevertetve

Az újrakristályosodott mellett ultrafinom-szemcsés tartományokat is látunk.

@ 4N minták

Sugárfüggés

- nincsen "lényeges" sugárfüggés
- a mikroszerkezet már 1 fordulat után telítődik

Mikroszerkezet

- az átlagos szemcseméret 220 nm
- közel az ECAP-pal elérhető szemcsemérethez

Number of HPT revolutions

- HPT esetén magasabb telítési diszlokációsűrűség ($\sim 140\times 10^{14}~{\rm m}^{-2})$, mint ECAP esetén (46 $\times 10^{14}~{\rm m}^{-2})$
- az alkalmazott hidrosztatikus nyomás (6 GPa) gátolja a vakanciák és a szennyezők mozgását
- szintén nagyobb az ikerhatár gyakoriság

Diffúziós együttható (D)

$$D \sim \exp\left[-rac{E_{VM} + pV_V}{kT}
ight]$$

$$\begin{split} E_{VM} &= 0.66 \; \mathrm{eV} \\ p &= 6 \; \mathrm{GPa} \; \Rightarrow \; p V_V = 0.34 \; \mathrm{eV} \end{split}$$

D 5 nagyságrenddel kisebb, mint ECAP esetén (ECAP esetén p = 300 MPa)

p nagy \rightarrow lassabb vakancia diffúzió \rightarrow nehezebb diszlokáció annihiláció

lkerhatár gyakoriság

Deformációs ikresedés

A szemcsén belüli akadályok (pl. LC) is ikerhatár-forrásként működnek.

Összefoglalás

Azaz néhány "kiragadott" megállapítás

- Az elérhető minimális szemcseméret nem függ sem a szennyezés fokától sem attól, hogy ECAP-pal vagy HPT-vel hoztuk létre a mintát
- Az alacsony SFE extrém magas diszlokációsűrűséget eredményez, ami nagy ikerhatár gyakorisághoz vezet
- Az ECAP-pal létrehozott 4N5 mintákban jelentős a megújulás és az újrakristályosodás (mikroszerkezeti paraméterek, egytengelyű összenyomás, mikro- és nanokeménységmérés)
- Az alacsony hőmérsékletű termikus stabilitás rendkívüli módon függ a szennyezőkoncentrációtól (szegregáció miatt)
- HPT esetén a kristályhibák sűrűsége rendkívüli mértékben megnövekszik köszönhetően az alacsony SFE-nek és az alkalmazott hidrosztatikus nyomásnak