Jahn–Teller-effektus Cs₃C₆₀-ban

Pergerné Klupp Gyöngyi Matus Péter, Kamarás Katalin MTA SZFKI

Jahn–Teller-effektus Cs₃C₆₀-ban Tartalom

Bevezetés az A_3C_{60} (A = K, Rb, Cs) alkálifém-fulleridekről A Cs_3C_{60} hőmérsékletfüggő IR spektruma Jahn–Teller-effektus Cs_3C_{60} -ban Konklúziók

Motiváció

Jelenségek a Cs₃C₆₀-ban:

- > fémes vezetés
- > szupravezetés
- ➢ mágnesesség
- > Mott-átmenet
- Jahn–Teller-effektus

Alapállapot:

mágneses Mott – Jahn – Teller szigetelő

IR spektroszkópia:

- > szimmetriára érzékeny
- Iokális
- időskálája gyors

A.Y. Ganin, Y. Takabayashi, Y.Z. Khimyak, S. Margadonna, A. Tamai, M.J. Rosseinsky, K. Prassides: Nature Materials, 7:367, 2008.
M. Capone, M. Fabrizio, C. Castellani, E. Tosatti: Rev. Mod. Phys. 81, 943 (2009).

A C₆₀ IR spektruma

A C₆₀ molekulapályái

R. C. Haddon: Acc. Chem. Res. 25:127, 1992.

A C₆₀ interkalálása

Szupravezetés

R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, A. V. Makhija: Nature 352:787 (1991)

Szupravezetés

R. M. Fleming, A. P. Ramirez, M. J. Rosseinsky, D. W. Murphy, R. C. Haddon, S. M. Zahurak, A. V. Makhija: Nature 352:787 (1991)

Szupravezetés

A.Y. Ganin, Y. Takabayashi, Y.Z. Khimyak, S. Margadonna, A. Tamai, M.J. Rosseinsky, K. Prassides: Nature Materials, 7:367, 2008.

Y. Takabayashi, A. Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, M. J. Rosseinsky: Science, 323:1585, 2009.

foo	\mathbf{C}	\mathbf{C}
	\mathbf{US}_3	\smile_{60}

A. Y. Ganin, Y. Takabayashi, P. Jeglic, D. Arcon, A. Potocnik, P. J. Baker, Y. Ohishi, M. T. McDonald, M. D. Tzirakis, A. McLennan, G. R. Darling, M. Takata, M. J. Rosseinsky, K. Prassides: Nature, 466:221, 2010 Y. Ihara, H. Alloul, P. Wzietek, D. Pontiroli, M. Mazzani, M. Ricco: Phys. Rev. Lett. 104:256402, 2010.

Jahn–Teller-effektus Cs₃C₆₀-ban Tartalom

12

Bevezetés az A_3C_{60} alkálifém-fulleridekről A Cs_3C_{60} hőmérsékletfüggő IR spektruma Jahn–Teller-effektus Cs_3C_{60} -ban Konklúziók

Fokozatos átmenet, nincs fázisátalakulás

Jahn–Teller-effektus Cs₃C₆₀-ban Tartalom

Bevezetés az A_3C_{60} alkálifém-fulleridekről A Cs_3C_{60} hőmérsékletfüggő IR spektruma Jahn–Teller-effektus Cs_3C_{60} -ban Konklúziók

Kristálytér

Az IR időskálán nem forog a molekula.

fcc Cs₃C₆₀ A15 Cs₃C₆₀ $\rightarrow T_{h}$ $I_h \rightarrow T_h, 2C_{60}^{3-}/\text{primitiv cella}$ I_h $T_{1u}(IR) \rightarrow T_{1u}(IR)$ $T_{1n}(IR) \rightarrow T_{1n}(IR) + T_{2n}$ $G_{u} \rightarrow A_{1u} + T_{1u}(IR)$ $G_{u} \rightarrow A_{1u} + A_{2u} + T_{1u}(IR) + T_{2u}$ A. Y. Ganin, Y. Takabayashi, P. Jeglic, D. Arcon, A. Potocnik, P. J. Baker, Y. Ohishi, M. T. McDonald, M. D. Tzirakis, A. McLennan, G. R. Darling, M. Takata, M. J. Rosseinsky, K. Prassides: Nature, 466:221, 2010

P. Jeglič, D. Arcon, A. Potocnik, A. Y. Ganin, Y. Takabayashi, M. J. Rosseinsky, K. Prassides: Phys. Rev. B, 80:195424, 2009

Jahn–Teller-effektus

A. Auerbach, N. Manini, E. Tosatti, Phys. Rev. B 49:12998 (1994); Y. Takabayashi, A. Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, M. J. Rosseinsky : Science, 323:1585, 2009 Y. Ihara, H. Alloul, P. Wzietek, D. Pontiroli, M. Mazzani, M. Ricco: Phys. Rev. Lett. 104:256402, 2010

Pszeudorotáció

szabad pszeudorotáció: I_h szimmetria gátolt pszeudorotáció: IR mérés időskáláján statikus lehet statikus torzulás

Kristálytér

Cs⁺ – C₆₀³⁻ kölcsönhatás – függ a szerkezettől a különböző irányú torzulások eltérő energiájúakká válnak megváltoztatja a torzulás alakját

Hőmérsékletfüggő konformerek

Konklúziók

A Jahn–Teller-torzulás egyértelműen kimutatható mindkét polimorfban 28-320 K tartományban.

A kristálytér csak módosít a torzulásokon, a hőmérsékletfüggésért és a kristályszerkezettől való függésért felelős.

Szobahőmérsékleten a pszeudorotáció gátolt, a torzulás az IR mérés időskáláján minden hőmérsékleten statikus.

Köszönetnyilvánítás

MTA SZFKI

A. Y. Ganin, A. McLennan, M. J. Rosseinsky University of Liverpool
Y. Takabayashi, M. T. McDonald, K. Prassides University of Durham

Anyagok és módszerek

- fcc Cs₃C₆₀
 A15 Cs₃C₆₀

A.Y. Ganin, A. McLennan, M.J. Rosseinsky, Y. Takabayashi, M.T. McDonald, K. Prassides

480-4000 cm⁻¹; 28-400 K G. Klupp, P. Matus, K. Kamarás

A Cs₃C₆₀ és a K₃C₆₀ IR spektruma

A Cs₃C₆₀ mindkét polimorfja szigetelő.

Y. Iwasa, T. Kaneyasu, Phys. Rev. B 51:3678, 1995 Y. Takabayashi, A. Y. Ganin, P. Jeglic, D. Arcon, T. Takano, Y. Iwasa, Y. Ohishi, M. Takata, N. Takeshita, K. Prassides, M. J. Rosseinsky : Science, 323:1585, 2009

Több fázis jelenléte

•86% fcc Cs_3C_{60} + 3% A15 Cs_3C_{60} + 7% bco Cs_4C_{60} + 4% CsC_{60} •14% fcc Cs_3C_{60} + 71% A15 Cs_3C_{60} + 15% bco Cs_4C_{60}

Kooperatív Jahn–Teller-effektus

C₆₀³⁻ – C₆₀³⁻ kölcsönhatás megszabja a torzulás irányát függ a molekulák relatív orientációjától – függ a szerkezettől hőmérséklet növelésével eltűnik

a torzulás alakja változatlan – spektrum változatlan