Hidrogéntárolás Mg-alapú nemegyensúlyi ötvözetekben

Eötvös Loránd Tudományegyetem, Fizika Intézet Anyagfizikai Tanszék

ELFT Őszi Iskola Mátrafüred 2012. Október 3.

•Hidrogéngazdaság

Hidrogéntárolás nemegyensúlyi Mg-alapú ötvözetekben

•Hidrogéntárolás nanokristályos Mg₇₀Ni₃₀ ötvözetekben

•Hidrogéntárolás amorf $Mg_{65}Cu_5Ni_{20}Y_{10}$ ötvözetben

NÉPESSÉG ENERGIA-FOGYASZTÁS

• 2011 október 31: 7 milliárd

• 2050: 10 milliárd

A jövő egyik nagy ígérete: a <u>HIDROGÉN</u> mint energiahordozó

- Szinte korlátlan mennyiség a Földön
- $H_2 + O_2 \longrightarrow H_2 O$, környezetkímélő
- Üvegházhatás jelentősen csökkenthető
- Legkönnyebb elem, legjobb energia/tömeg hányados (legjobb valencia elektron/nukleon hányados)

DE:

- Természetes állapotban alig fordul elő (~1% molekuláris gáz)
- Probléma: gazdaságos és biztonságos tárolás !!!
- Előítélet.... (Zeppelinek)

Hidrogéngazdaság

CÉL: üvegházhatást kiváltó CO₂ kibocsátás jelentős csökkentése

Hidrogén és Tüzelőanyag-cella Nemzeti

Technológiai Platform

(HTC Platform)

Hidrogéntermelés

Hagyományos technológiák

- Földgáz, nehézolaj parciális oxidációja (1000 GJ/h ≈ 10⁵ m³/h)
- Szénhidrogének pirolízise
- Csak CCS (CO₂ capture and storage) esetén van jövőbeli alkalmazhatósága
- Elektrolízis:
 - 3-4x energiaigény, drágább kisebb volumenű/osztott hidrogéntermelés esetén versenyképes, pl. szél, napenergia
- Biomasszából kémiai módszerekkel

Biomassza pirolízise magas T-n

Fotokatalitikus vízbontás

 Napfény+katalizátorok új fotokatalitikus félvezetők nanostruktúrált anyagok

Hidrogénszállítás

 Ki kell építeni a hidrogéngazdaság infrastruktúráját Központi elosztás

- Vasút, hajó, közúti szállítás: HYApproval: biztonság !!
- Csővezetékek, USA, EU: jelenleg 2600 km: "H₂ Hyway" (földgázvezeték ~4x10⁶ km…) De technológia lehetővé teszi, hogy bizonyos mennyiségű H₂ keverhető

<u>Helyi elosztás</u>

Hidrogén töltőállomások (~1000 hidrogénüzemű jármű,

60 kút EU-ban): ma még elsősorban nagynyomású gáz formájában tárolják

•USA, Dept. Of Energy: 2017-re H₂: 1\$/kg

Hidrogéntárolás

Hidrogéntárolási eljárások fő jellemzői (EU adatok)

CSEPPFOLYÓS drága alapberuházás

drága alapberuházás űrtechnológia

<u>GÁZ</u>

Mai gépkocsi prototípusok: szénszálas kompozit Biztonság !

<u>SZILÁRD</u>

1. Molekuláris H₂: fiziszorpció Van der Waals erők: 1-5 kJ/mol

	A hidrogéntáro	olás módja	saját térfogati	A tartály térfogati	saját hidrogén
			energiasűrűsé	energiasűrűsége	tömegarány
			g	(2003-as helyzet)	
			kWh/l	kWh/l	%
	folyékony H ₂ ,		2.4	1.2	100.0
_	1 bar 20 K				
L	Komprimált H ₂	gáz	1.3	1.1	100.0
Γ	700 bar. 300 K	-			
	Nanopórusos	300 K	0.6	0.2	2.5
	aktív szén				
	100 bar	77 K	1.9	0.5	8.0
	Intersticiális fémhidridek		4.2	1.8	2.5
	(AB_2, AB_5)				
	Komplex fémhi	dridek	4.2	0.7	9.5
	Hidrid vegyület	ek	3.7	1.4	10.8
-	DIL				

H₂ gas

adsorbed

hyrodgen

Solid solution

Hydride phase β-phase

Hydrogen-storage materials for mobile applications

TURE | VOL 414 | 15 NOVEMBER 2001 | www.nature.com

Metal hydride

insight review articles

SZILÁRD

2. Atomos H: kemiszorpció

Tetraéderes/oktaéderes intersticiális helyekre ül be a hidrogén

Kémiai kötés: **hidridfázis** 15-20%-os térfogatvált, >40 kJ/mol

fémhidridek komplex hidridek

Hidrogén tüzelőanyag-cellák (FC):

- A hidrogén kémiai energiája közvetlenül alakul elektromos energiává (és hővé) 50-60%-os hatásfokkal víz fejlődése mellett
- **PEMFC** Protonvezető membrán (H⁺) (polimer elektrolit)

Katalizátor (anód: PtRu, PtRh, Pt/WO₃) (katád: Pt. Pt/(PtCr)

(katód: Pt, PtV, PtCr)

Gázdiffúziós réteg (módosított szénszövet) Bipoláris lemez

- **PEMFC** (proton cserélő tüzelőanyag-cella)
- DMFC (direkt metanol tüzelőanyag-cella) tüzelőanyag-cella (DEFC)
- AFC (alkáli tüzelőanyag-cella)
- PAFC (foszforsavas tüzelőanyag-cella)
- MCFC (olvasztott karbonátos tüzelőanyag-cella)
- SOFC (szilárd oxid alapú tüzelőanyag-cella) (O²⁻)

Alkalmazási területek

• Telepített (helyhez kötött)

- Nagy átalakítási hatásfok
 - Háztartások (1-50 kW)
 - Középületek, ipari, mg.-i létesítmények (50-500kW)
 - Erőművek (500kW<): egyelőre távoli cél....
- Közlekedési (on-board)
 - Személygépkocsi-gyártás: hibrid FC+elektromos+bioüzemanyag (fajlagos költségek egy nagyságrenddel meghaladják a jelenlegi technológiákat)
 - Jelenlegi FC-buszok: 10⁶ km, 10⁵ h üzemidő, 4000 €/kW, 2000 h élettartam
 - Dánia: dízelmozdonyok részleges cseréje hidrogén tüzelőanyag-cellás vonatokra
- Hordozható (mobil)
 - Mobiltelefonok, laptopok akkumulátorai (Li-ion elemeknél 5-10x energiasűrűség)
 - Szünetmentes tápegységek
 - Katonai-védelmi szolgáltatások

	Jelen	Rövid táv	Középtáv	Hosszútáv		
¥ Termelés	 Földgáz reformálás Parciális oxidáció Ele Dec 	Biomassza és sze ktrolízis megújuló és centralizált bio-üzem CO2 megkö	én elgázosítása nukleáris energiával anyag reformálás itési technológiák	 Fotovoltaikus vízbontás és katalitikus fotolízis Biológiai hidrogén előállítás Termokémiai vízbontás nukleáris energiával Decentralizált földgáz reformálás 		
Szállítás	 Nagyméretű palackokba komprimálva Tartálykocsikban cseppfolyós állapotban 	oan • Decentralizált helyszíni termelés • Töltőállomások • Új szállítási módok (?) • Csővezetékes szállítás → Csővezetékes elosztás				
Tárolás	 Nyomás alatti tárolás Cseppfolyós hidrogéntárolás 	 Szilárdfázisú hidrogéntárolás (hidridek) 		drogén tárolás • Fejlett szilárdfázisú vagy kémiai tárolás		
Átalakítás	• Égetés	 Tüzelőanyag-cell Emisszió szegény égetés technikák 	a Töm y } éreti	Tömegtermelésre alkalmas, érett technológiák		
Alkalmazások	 Üzemanyag finomítás Hordozható eszközök Helyhez kötött eszközök és fiották 	 Decentralizált energia ellátás Busz- és taxi flották Járműparkok Hadiipar 	 Kereskedelmi flot Lokális kobinált ciklusú energia ellá Személygépjármű piacra vezetése 	tták • Közmű rendszerek (tömegközlekedés, energia) ivek • Hidrogén integrálása erőművi rendszerekbe		

Hidrogéntárolás Mg-alapú nanokristályos rendszerekben

H-tárolást leíró fizikai paraméterek

- Maximális kapacitás *
- Kinetika (H-leadás/felvétel) *
- Hőmérséklet, termikus stabilitás *
- Nyomás
- Tartósság
- Élettartam (cyclic life)

A legnagyobb kihívás a paraméterek <u>együttes</u> optimalizálása

Kapacitás

Bormann et al. SM 49 (2003) 213

Hőmérséklet

Yin et al. Mat. Trans. 43 (2002) 417

15

Kinetika

Bormann et al. J. All. Comp 315 (2001) 237

Élettartam

Han et al. J.All. Comp 330-332 (2002) 841

Hidrogéntárolás nanokristályos Mg₇₀Ni₃₀ porokban és kompaktokban

SPEX 8000 rázómalom

Plunger Sample

Nagynyomású csavarás(HPT)

Képlékeny deformáció nagy térfogatban
Extrém deformáció érhető el egyéb deformációs technikákkal összevetve

$$\gamma(\mathbf{r}, \mathbf{t}) = \frac{2\pi \cdot \mathbf{N} \cdot \mathbf{r}}{\mathbf{L}} = \frac{2\pi \cdot \mathbf{r}}{\mathbf{L} \cdot \mathbf{t}_{rev}} \cdot \mathbf{t}$$

L=200 µm: mintavastagság t_{rev}=60 s: csavarási periódusidő N=5: fordulatok száma p=6 Gpa: alkalmazott nyomás

Morfológia

Nagyfelbontású, helyzetérzékeny röntgendiffrakció

Konvolúciós teljes vonalprofil illesztési eljárás (CMWP) (Ungár T., Gubicza J., Ribárik G.)

teljes mért pordiffrakciós spektrumot illeszti egy háttér függvény és ab-initio elméleti profilok összegével

Lognormális krisztallit-méreteloszlás:

$$f(R) = \frac{1}{\sigma\sqrt{2\pi}} \frac{1}{R} \exp\left(-\frac{\left[\ln\left(\frac{R}{m}\right)\right]^2}{2\sigma^2}\right)$$

mikroszerkezeti paraméterek: m, o, p, Re

Koherensen szóró tartományok: $D=m^*exp(2.5\sigma^2)$

Mikroszerkezet

A HPT hatása a mikroszerkezetre

H-kinetikai vizsgálatok

Kinetikai modellek

Klasszikus reakciófüggvények: $\alpha = \alpha_{s}(t,R)$

1. Felület kontrolált (SC)

2. Összehúzódó térfogat (CV)

3. JMA-típusú

kemiszorpciós helyek véges száma limitál kezdeti felületi nukleáció gyors, front mozog befelé diffuzió limitál nukleáció véletlenszerű front mozgás limitál

Többrészecskés reakciófüggvény

Minta	Kapacitás (wt.%)	Szorpció sebesség (10 ⁻³ wt.%/s)	CV reakció konstans (s ⁻¹)	
			Egyrész.	Többrész.
1h BM	2.0	3.2	5.7*10 ⁻⁴	5.0*10 ⁻⁴
1 h BM+HPT	3.0	2.4	1.8*10 ⁻⁴	1.3*10 ⁻⁴
10h BM	2.4	5.3	5.2*10-4	4.4*10-4
10 h BM+HPT	3.0	3.0	2.5*10-4	1.8*10 ⁻⁴

<u>A HPT hatása:</u>

Gyakorlatilag tökéletes hidrogén-adszorpció a különböző fázisok, mikroszerkezet ellenére

Rácshibák (diszlokációk) szerepe

Hidrogéntárolás amorf Mg₆₅Cu₅Ni₂₀Y₁₀ ötvözetben

Gyorshűtés

Aprítás +

Előkompaktálás

Nagynyomású csavarás

L=500 µm: mintavastagság t_{rev}=300 s: csavarási periódusidő N=1, 2, 5: fordulatok száma p=4 Gpa: <u>alkalmazott nyomá</u>s

Mg: 63.4 at.% Cu: 5.8 at.% Ni: 19.0 at.% Y: 11.8 at.%

25

Mikroszerkezet a pordiffrakció alapján

Deformációfüggő mikroszerkezet

Kalorimetria

Nagynyomású kalorimetria

Amorf állapot: szabadtérfogat, kisebb atomsűrűség, diffúziós hossz növekedése

H-felvétel hőmérséklete jelentősen csökken

Deformált állapot (Amorf nanokompozit): Mg₂Ni szemcsék megjelenés

Kapacitás jelentősen nő

Á. Révész, Á. Kis-Tóth, L.K. Varga, E. Schafler, I. Bakonyi, T. Spassov: Int. J. Hydrogen Energy 2012

A hidrogén-szorpció deformációfüggése

Mg₆₅Ni₂₀Cu₅Y₁₀ N=5 minta

A sugár függvényében növekvő deformáció egyre több megkötött hidrogént jelent

A nagyobb kapacitás oka: Az amorf és kristályos fázis közötti határfelület térfogati hányadának jelentős megnövekedése

Összefoglalás

 •<u>Nanokristályos Mg₇₀Ni₃₀ porok</u>ban a golyósőrlés hatására folyamatos mind a porméret mind a krisztallitméret csökken, mialatt a Mg+Ni→Mg₂Ni szilárdfázisú reakció is végbe megy.

•Az őrlést követő nagynyomású csavarás (HPT) további (enyhe) mikroszerkezetbeli finomodást eredményez, miközben a deformáció hatására egyre nagyobb rácshiba-sűrűség alakul ki.

•H-kinetikai vizsgálatok alapján a megkötött hidrogén mennyisége a HPT folyamat során 30-50 %-kal nőtt a golyósőrölt állapothoz képest, elsősorban a rácshibáknak köszönhetően.

•Gyorshűtött amorf Mg₆₅Ni₅Cu₂₀Y₁₀ szalagból kompaktált korongok HPT deformációja során Mg₂Ni kristályos kiválások képződnek. A korong közepén csak néhány ~1 µm átmérőjű, a peremhez közeledve egyre több ~30-500 nm átmérőjű kristályos blokk jelenik meg.

 Teljesen amorf állapotban a hidrogén-felvétel jóval alacsonyabb hőmérsékleten (~390 K) történik, mint kristályos fázisban. A csavarás során kialakult Mg₂Ni kristályos szemcsék hatására a kapacitás jelentős megnő alacsonyabb adszorpciós hőmérséklet mellett.

- Tony Spassov Univ. Sofia, Bulgária
- •Fátay Dániel ELTE Anyagfizikai Tanszék
- Kis-Tóth Ágnes, Kánya Zsolt, Verebélyi Tamás ELTE Anyagfizikai Tsz.
- Szabó Péter János BME
- Varga Lajos Károly MTA-SZFKI
- •Erhard Schafler Univ. Wien, Ausztria
- •Alex P. Zhilyaev USC, USA, Dept. Mater Phys, Univ Madrid, Sp.o.
- D. Zander Univ. Dortmund, Németország
- T. Klassen, R. Bormann GKSS Geesthacht, Németország

